On the Korteweg-de Vries equation: an associated equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Korteweg-de Vries Equation in Bounded Domains

where μ, ν are positive constants. This equation, in the case μ = 0, was derived independently by Sivashinsky [1] and Kuramoto [2] with the purpose to model amplitude and phase expansion of pattern formations in different physical situations, for example, in the theory of a flame propagation in turbulent flows of gaseous combustible mixtures, see Sivashinsky [1], and in the theory of turbulence...

متن کامل

An exact solution to the Korteweg-de Vries-Burgers equation

In this letter, applying a series of coordinate transformations, we obtain a new class of solutions of the Korteweg–de Vries–Burgers equation, which arises in the theory of ferroelectricity. © 2005 Elsevier Ltd. All rights reserved.

متن کامل

The Generalized Korteweg-de Vries Equation on the Half Line

The initial-boundary value problem for the generalized Korteweg-de Vries equation on a half-line is studied by adapting the initial value techniques developed by Kenig, Ponce and Vega and Bourgain to the initial-boundary setting. The approach consists of replacing the initial-boundary problem by a forced initial value problem. The forcing is selected to satisfy the boundary condition by inverti...

متن کامل

Two Remarks on the Generalised Korteweg De-vries Equation

We make two observations concerning the generalised Korteweg de Vries equation ut + uxxx = μ(|u|u)x. Firstly we give a scaling argument that shows, roughly speaking, that any quantitative scattering result for L-critical equation (p = 5) automatically implies an analogous scattering result for the L-critical nonlinear Schrödinger equation iut+uxx = μ|u|4u. Secondly, in the defocusing case μ > 0...

متن کامل

Multisymplectic box schemes and the Korteweg–de Vries equation

We develop and compare some geometric integrators for the Korteweg-de Vries equation, especially with regard to their robustness for large steps in space and time, ∆x and ∆t, and over long times. A standard, semi-explicit, symplectic finite difference scheme is found to be fast and robust. However, in some parameter regimes such schemes are susceptible to developing small wiggles. At the same i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 1984

ISSN: 0161-1712,1687-0425

DOI: 10.1155/s0161171284000272